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A UNIQUENESS THEOREM FOR
MINIMAL SUBMANIFOLDS

ROBERT HERMANN

1. Introduction

The following theorem is well known: There is a unique geodesic joining
two points on a complete simply connected Riemannian manifold of nonposi-
tive sectional curvature.

The main point of this paper is the following generalization.

Theorem. Let N and B be minimal submanifolds of a Riemannian mani-
fold M whose sectional curvature is nonpositive. (If dim N=dim M—1, it
would suffice to know that M has nonpositive Ricci curvature.)

Suppose that:
a) N is oriented and finite with oriented boundary oN C B.
b) B is a totally geodesic submanifold of M.
¢) Each point p of N can be joined to B by a geodesic, which is perpen-
dicular to B at the end-point, and varies smoothly with p.
Conclusion: N C B.

The main tool is an integral-geometric inequality, which enables one to
make various extensions of the main result, e.g., to the case where B is only
a minimal submanifold of M, or where N is a manifold with singularities,
e.g., a piece of an analytic subvariety of a Kdhler manifold.

2. Proof of the theorem

Let M be a complete Riemannian manifold, and N and B submanifolds of
M. (For notations not explained here, refer to [1] and [2].) Let exp:
T(M) — M be the exponential map of the Riemannian structure, where T(M)
is the tangent bundle of M. Suppose there exists a vector field X on M such
that:

a) For peN, exp(X(p)) € B.

b) The geodesic t — exp (zX(p)) is perpendicular to B at t = 1.

Let | | denote the norm on tangent vectors associated with the inner product
{, > defining the Riemannian metric on M, f(p) = |X(p)|* for pe N, and 4%
be the Laplace-Beltrami operator, relative to the induced metric on N. Our
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goal is first to find a convenient formula for 4%f, and then to integrate it
over N.

Let p be a point of N, and s — ¢(s) a geodesic of N starting at p. Construct
the homotopy 4(s, 1) = exp (tX(a(s))), 0 < 5,1 < 1. Then

1

d
5 - Hots <)>_——f<aa 8.5>dt

@.1) = f P.5.8, 6,604t
_f<V6‘5 5,65dt = <8,3, 8,8 4}

Here 3,8(s, t) is the tangent vector to the curve u — (s, ) at u = ¢, 3,0 is
the corresponding vector field along the homotopy 8, 3.6 is defined similarly,
and F,3,6(s, 1) is the covariant derivative (with respect to the Levi-Civita
affine connection) of the vector field u — 3,5(s, u) along the curve u — (s, u).
The rules of this formalism are given in more detail in {1] or [2]. For
example, since each curve ¢ — (s, f) is a geodesic, we have V/,0,6(s, 1) = 0.

> dzf(a(s))—(Vaa aa>—<aa V.0.0) k-0

= (73,8, 3,55y — f % (8.5, 7,8,8)dt
2.2) 0
1
= (F.3:5, 3,500 — f (738, V.3,65dt
[}

— f (5.5, R(3,3, 5,5)(3:5)>dt ,

where R(,)( ) is the curvature tensor of M. The last term can be written as
1
{120 A 251K @0, 000t
[}

where K(,) is the sectional curvature, and |36 N 3,6(s, t)|? is the square of
the area of the parallelogram spanned by 3.5(s, ) and 8,5(s, ). Let S¥,(, j
and S%,(, ) be the second fundamental form of N and B. Write X =X’ + X"/,
where X’ is tangent, and X"’ perpendicular to N. Then

P38, 3550, 1) = 52,0.(3:50, 1), 3,50, 1)) ,
<Vsas5, a[5>(0, 0) = S_;’”(p)(o"(o)7 ag (0)) -
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Thus,

1
2
2.3) %) (6(0), 5°(0)) — f (76,3, 7.3.5>d1

0

1
+ f 160 A 5,01K (3.5, 5.5)dt .
1}

%{f(a(s)) =0 = Sﬁa(o, 1)(as5(0, 1), 3.6(0, 1))

Let us suppose that B is totally geodesic, and the sectional curvature of M is
nonpositive. Then

(2.4) di;f(a(s))ls=o < %0 (07(0), 0"(0)) .

1
2
Suppose 4, ---, u, form an orthonormal basis of N,. Let o,(s) be the

geodesics of N beginning at p and tangent there to u,, a=1, ---, n. Then

L 0alDloos < 5 vyt 1)

1
2 ; ds
The left-hand side of this inequality is just 14¥f(p). Let X, ---, X,, be an
orthonormal basis for vector fields on N so that at the boundary points, X,(p)
is the inward pointing normal to dN. Then, we have the basic inequality

%Aw < 3 SEAXa, XL |

The right-hand side is zero if N is a minimal submanifold of M. Integrate
this over N. Green’s formula gives

[ pf = f X,

where the volume elements are assumed to be those defined by the induced
Riemannian metric on N and oN.
(2.1) applies to calculate X,(f). In fact, X,(f) = (X,, X>. Let us assume

that f(X 1 X» =0, and N is a minimal submanifold of M, i.e., the trace of

N
its second fundamental form is zero in every normal direction. (For example,

if dN C B, as in the statement of Theorem 1, then X(p) = O automatically.)
Thus, we have

ras=0="r,9,4,
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i.e., X has zero corvariant derivative at every point of N and in every direc-
tion tangential to N. In particular, (X, X) = f is constant along N. We also
have

|8:6 N\ 0,5]|*K(3,6, 6:6) = 0.

If N is a hypersurface, we have either N is totally geodesic, or X"/ =0 on
an open subset of N; that open subset is a ““focal submanifold” for the family
(p, t) — exp (tX(p)) of geodesics of N. At any rate, Theorem 1 is proved.
Final remarks on Theorem 1: If B is a closed submanifold of M, hypothe-
sis b) of Theorem 1 follows from the assumption that the curvature of N is
nonpositive, and, say, an assumption that M is simply connected (see [1]).

3. Weakening the hypothesis

Let 6,(s, ) = exp (tX(0.(s)), a= 1, - - -, n. Using (2.3) again and assum-
ing that the curvature is nonpositive give

4() < Z 8300 0(0:02(0, 1), 0:0.(0, 1))

(3.1)
— 2 8% (00(0), 6,(0)) .

The second term on the right-hand side vanishes, of course, if N is a minimal
submanifold. The first term will also vanish if B is a minimal submanifold,
providing that 6,6,(0, 1), - - -, 3,6,(0, 1) is a basis for the tangent space to B.
This requires

3.2) dimB = dim N .

Now, if (3.2) is satisfied, and each point pe N is not a focal point of B
relative to the geodesic ¢t —exp (¢X(p)), then an orthonormal basis u,, - - -, u,
of N, can be found so that §,5,(0, 1), - - -, 8,6,(0, 1) is a basis of B, ;. In
this case the argument then goes through.

The argument also goes through if

(33) SaBtsa(o, 1)(635a(07 1)’ asaa(oa 1)) > 0 ’

and N is a minimal submanifold. Now, (3.3) can be regarded as a ‘“‘con-
cavity” condition. The conclusion is that N cannot be completely on the
“concave” side of B, if its boundary lies in B.

It is well known that complex-analytic submanifolds of Ké@hler manifolds
are minimal submanifolds. One of the goals of minimal-submanifold theory
is to understand whether or not facts known from algebraic geometry about
algebraic varieties extend to general minimal submanifolds. This suggests
that we investigate how singularities in NV will affect the above arguments.
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Suppose then that N° is a closed subset of N such that N — N° is a minimal
submanifold, but that N° has no points in common with §N. Let us suppose
that N° can be surrounded with “tube” 7T,, depending on a parameter ¢, with
boundary 97,, whose area goes to zero as ¢ — 0. Let us apply these arguments
to N — T, instead of N. When applying Stoke’s theorem to 47f, we will have
to take into account a term of the form:

[,

aT,

where X, is the unit normal to the boundary 87,. Note, however, that this
does not depend on the derivative of X, as one would expect a priori. It is
this simple fact that gives hope that the uniqueness proofs can be extended to
manifolds with singularities.

The next situation to be considered should be that where N has constant
positive curvature. However, the methods used here break down in this case.
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